
Pygmy Forth User Manual

Frank Sergeant

copyright © 2017 Frank Sergeant
all rights reserved

Editor in Stew Pot comic, by artist Frank Heitzman, used with permission

formatted October 29, 2017 at 04:15:42 PM

eBooks, PDF, and HTML versions formatted with the Nepo Press web-based service at
http://nepotism.net.

Contents

Introduction 1

Quick Start 3

Running Pygmy Forth 7

Implementation Language 8

Vocabularies 9

Multitasking 10

I/O Redirection 11

De�nitions 12

Recursion 13

Kernel 14

Turnkey Applications 15

Numeric Bases 16

Numbers 17

Strings and Characters 18

Text Files versus Block Files 19

Stacks 23

Loops 24

Files 25

CODE words 26

High-level Forth words 29

Compiling 30

True and False Values 31

VARIABLEs 33

Constants 34

Glossary 35
FORTH vocabulary . 36
COMPILER vocabulary . 39

Afterword 40

Introduction

Pygmy Forth is the new, 32-bit or 64-bit Pygmy Forth for PCs/desktop computers. It was
�rst released in October, 2017.

This manual corresponds to Pygmy Forth version 17.10, released October, 2017. The
�rst two digits of the version number represent the year (17). The next two digits represent
the month (10). If more than one release occurs in a month, the version will be adjusted
slightly.

I now refer to the older 16-bit Pygmy Forth as Pygmy for DOS or Pygmy Forth for
DOS.

I miss my Pygmy for DOS. This new Pygmy Forth is my attempt to replace it for the
modern desktop environment (primarily Linux in my case).

For programming for PCs, I used to love my lovely Pygmy for DOS. However, the days
of DOS are gone, and good riddance to Microsoft as far as I’m concerned. I am delighted
with the speed and conveniences and openness of the Linux world, but I have been missing
Forth in that environment. I know there are many alternative Forths, and I am sure they
are great for those who like them, but none of them suits me the way Pygmy did.

In summary, I WANT MY PYGMY BACK for Linux/Mac/Windows.
Pygmy Forth is aimed at desktop systems (Linux, Unix, Mac OS, Windows). It is written

in Python (version 3), so should run anywhere that Python runs. I run it mainly on Linux,
so if you �nd it needs any minor adjustments to run elsewhere, please let me know and I’ll
add the details to this manual.

Pygmy Forth is distributed as a zip �le. See the Quick Start section for how to run it
with or without installing it.

Pygmy Forth is written in Python and it can be extended by writing CODE words
(primitives) in Python, or by writing high-level Forth words.

Pygmy Forth gives you the bene�ts of Forth factoring, incremental and interactive
testing, and simplicity, while providing easy access to the world of Python facilities and
libraries.

This project is in its early stages as of fall, 2017.
If you �nd anything that does not work as expected or as described in the manual,

please let me know.
Pygmy Forth inherits heavily from my various prior Forths, which inherited heavily

from Chuck Moore’s Forths, especially cmFORTH.

License

Pygmy Forth is licensed under the MIT license except as otherwise noted in speci�c �les.
See the �le LICENSE.txt for the full text of the MIT license. Thus you are free to
use it for just about any purpose. The only exception at the moment is the �le pygmy-
mode.el (an Emacs mode for editing pseudo block �les) which is licensed under the
GPLv2 (see the �le gpl-2.0.txt).

1

Pygmy Forth User Manual 2

Audience

This manual does not teach Forth, not even Pygmy Forth, from the ground up. Perhaps I
can add some of that to the manual later.

Meanwhile, it will be helpful if you already have some familiarity with Forth, especially
Pygmy for DOS and/or Riscy Pygness. If not, you might consider downloading Pygmy for
DOS (http://pygmy.utoh.org/pygmyforth.html). It has some supplementary material which
might help.

The Author

My name is Frank Sergeant. My email address is mailto:frank@pygmy.utoh.org (frank@
pygmy.utoh.org). I will be pleased to receive comments, corrections, suggestions
about the manual and Pygmy Forth. If you �nd a bug, please send the smallest example
that illustrates the problem, as that will greatly increase the chance of a �x.

I wrote Pygmy for DOS, starting in the late 1980s, as a DOS Forth heavily based on
(but not as lean as) Chuck Moore’s cmFORTH. I produced several variants of Pygmy for
microprocessors, including the 68HC11, 68000, Super 8, 8051, etc.

Later, I wrote Riscy Pygness, a version of Pygmy for the ARM and ARM Cortex. When
developing on Riscy Pygness, the work is split between the host PC and the target ARM
chip, thus requiring only very limited RAM/Flash on the target.

I have done programming work in a number of languages in addition to Forth, including
assembly, Smalltalk, Lisp, Python, and Tcl.

A major project these days is doing both custom and automated eBook and printed
book formatting at http://nepotism.net.

frank@pygmy.utoh.org
frank@pygmy.utoh.org

Quick Start

Note: When command line examples are given, a leading dollar sign ($) represents the
terminal’s shell or command prompt for an ordinary user, and a leading pound sign (#)
represents the terminal’s shell or command prompt for root (also called the superuser).
Do not type the leading pound or dollar sign. Your exact shell prompt will likely look
slightly di�erent, e.g., frank@oak:$ or C:\>.

To get to a command line (shell prompt), open a terminal in Linux or MacOS. For
Windows, see https://www.lifewire.com/how-to-open-command-prompt-2618089 or do a
web search for something like “getting a command prompt (DOS box) on Windows 10”.

The examples below assume Linux, Unix, or MacOS. You’ll need to adjust the commands
and directories slightly for Microsoft Windows. For example, the Linux cp command
would be the Windows copy command (or just use the Windows Explorer �le browser).

To run it without “installing” it:

• Verify Python version 3 is installed

• Download Pygmy Forth as a .zip �le from http://pygmy.utoh.org/pygmy64.html

• Unzip the .zip �le into the directory of your choice

• Run it in a terminal from that directory as either

$ python pygmykernel.py

or

$ python3 pygmykernel.py

To “install” it:

• Verify Python version 3 is installed

• Download Pygmy Forth as a .zip �le from http://pygmy.utoh.org/pygmy64.html.

• Select or create a directory named pygmy or pygmyforth. This directory can
be a system wide directory, such as a subdirectory under /usr/local/, or a
directory under your home directory /

• Unzip the .zip �le into that directory

3

Pygmy Forth User Manual 4

• Copy or link the �les pygmykernel.py and pygmy.fth and pygmy.sh to
a directory in your path such as /usr/local/bin (perhaps C:\Program
Files on Windows)

• Edit pygmy.sh, if necessary. On Windows, create a similar batch �le named
pygmy.bat

Verify Python Is Installed

Pygmy Forth requires Python version 3 (or later). You can test for this at a command line
by typing the following in a terminal (a command prompt):

$ python --version

If the response is something like this,

Python 3.6.2

all is good because the �rst digit is 3. But if you get a response like this

Python 2.7.14

you are running version 2 and that won’t work. Even so, you still might have version 3
available under a slightly di�erent name. Try this:

$ python3 --version

If you do not have version 3 available, use your system’s package manager to install it or
go to https://www.python.org/ to download and install it. It is free, and easy to install. My
video at https://www.youtube.com/watch?v=CmUhs6-Aa9k might help. Also, you can do a
web or YouTube search for “How to Install Python on <my operating system>”.

If you get a message like the following when you try running Pygmy Forth,

File "pygmykernel.py", line 425
print ("%s " % i, end=END)

^
SyntaxError: invalid syntax

that is a clue that you are not running Python version 3.

Pygmy Forth User Manual 5

Example full installation

Here is how I might install it on a Linux system. Suppose I have downloaded pygmy-
forth1710.zip into my /Downloads directory and that my home directory is
/home/frank (also known as /). Remember, the dollar sign represents my ordinary
user account (frank) prompt and the pound sign represents the superuser account (root)
prompt. Here is what I would type (with comments below each line):

$ python --version
(uh-oh, on my system,

python is just version 2)
$ python3 --version

(oh, good, I get version 3
with the python3 command)

$ echo $PATH
(make sure /usr/local/bin

is in my path)
$ sudo -i

(temporarily become root,
alternatively, use the su command)

cd /usr/local
(change to the /usr/local directory)

mkdir pygmy
(create a pygmy directory

under /usr/local)
cp /home/frank/Downloads/pygmyforth1710.zip .

(copy the zip file to
the pygmy directory)

unzip pygmyforth1710.zip
(unzip the file)

cd ..
(move up a level to /usr/local)

cd bin
(move down a level to /usr/local/bin)

ln -s /usr/local/python/pygmykernel.py .
(link the Pygmy kernel program

into /usr/local/bin)
ln -s /usr/local/python/pygmy.fth .

(link the Pygmy Forth code
into /usr/local/bin)

ln -s /usr/local/python/pygmy.sh .
(link the shell script

into /usr/local/bin)
cat pygmy.sh

(display the contents of the
shell script to verify it
is correct. For example,
you may need to change
’python3’ to ’python’)

exit

Pygmy Forth User Manual 6

(exit the root account)
$

(now I am once again running
as my regular user account)

After that, any user, from any directory, should be able to start Pygmy by running the
following in a terminal:

$ pygmy.sh

Note, if you want the start-up command to be even shorter, you can rename or copy
pygmy.sh to just pygmy (or even pyg).

Running Pygmy Forth

You can start Pygmy Forth like this:

$ pygmy.sh

or, since the $* in the shell script passes all command line arguments to pygmyker-
nel.py, you can run it like this to load additional �les:

$ pygmy stars.fth

or

$ pygmy myutils.fth myapp.fth

The shell script starts pygmykernel.py, which loads the rest of the Forth system from
pygmy.fth. The �le pygmy.fth is written in Forth. You may load additional Forth
�les as well.

Since pygmykernel.py is marked executable (on systems that respect that), if the
default Python is version 3 or later, another way to start Pygmy Forth is just by running

$ pygmykernel.py

Assuming it is in your path, the above runs pygmykernel.py.

$ pygmykernel.py stars.fth

After that, pygmykernel.py loads any additional �les listed on the command line,
such as the �le stars.fth in the above example. It looks for the additional �les in the
current directory unless a di�erent path is speci�ed.

Once you have started Pygmy Forth in the terminal, you will get an interactive prompt
where you can type Forth commands or load Forth �les. It looks like this:

Pygmy Forth version 17.10
Welcome to Pygmy Forth
>

Exiting from Pygmy Forth

To exit from Pygmy Forth, type

BYE

7

Implementation Language

Pygmy Forth is written in Python (Python version 3), so it will run everywhere: Linux,
Mac, Windows, 32 bits or 64 bits. (I don’t know about cell phones and tablets. Please let
me know if you try it.)

High-level Forth words are compiled as Python procedures, rather than as lists of
tokens or addresses. CODE words are supported and are written in Python, not assembly
language. That is, you can think of Python as being Pygmy Forth’s assembly language.

8

Vocabularies

There are two:

• FORTH containing non-immediate words

• COMPILER containing immediate words

9

Multitasking

I hope it will be supported, but I have not begun to think about it yet.

10

I/O Redirection

This needs some more thought.

11

De�nitions

New Forth words are de�ned conventionally. High-level de�nitions begin with a colon
and end with a semicolon.

When typing interactively, a new word must be de�ned entirely on one line. So, don’t
press the Enter key until after typing the ending semicolon. However, there is no limit to
line length, so just let it wrap on the terminal as necessary.

Here are some examples:

: STAR (-) ’* EMIT ;
: STARS (n -) FOR STAR NEXT ;
: 6STARS (-) 6 STARS ;

De�nitions may have multiple exits, with either the word EXIT or the shorthand double
semicolon (;;). The single semicolon is used only to mark the end of a de�nition.

High-level Forth words are maintained in the dictionary and automatically map the
Forth word name to the name of the corresponding Python procedure.

12

Recursion

Recursion is allowed, but be careful. The word must already be de�ned, at least with a
dummy de�nition. In the following example, FAC will �rst be de�ned with a dummy
de�nition, but that will be replaced by the second de�nition of FAC. Also, “tail call
optimization” is not performed, so you could run out of stack eventually.

: FAC DUP ; (just a dummy definition)

: FAC (n - n!)
DUP 1 >
IF (n) DUP 1 - (n n-1) FAC * THEN ;

13

Kernel

As with a traditional Forth, there is a kernel, which is just enough Forth to know how to
LOAD the rest of the Forth system from a Forth text �le.

The kernel is a Python (Python 3) program named pygmykernel.py. Running
this in a terminal gives you an interactive loop (a REPL) with a prompt where you can type
Forth words and load Forth source code �les.

In e�ect, Python is the assembly language for Pygmy Forth. Thus, “primitives” (CODE
words) are de�ned as Python procedures.

Although there is no need to de�ne small constants (such as 0, 1, 2, 3) as Forth words,
here is how they could be de�ned as CODE words. The new word 0 would push the integer
zero to the Forth data stack:

CODE 0 dpush(0) END-CODE

See any of the CODE words in pygmy.fth for further examples. Note that there must
be at least two spaces between the name and the start of the Python code, or the Python
code must start on a new line and be indented.

When pygmykernel.py begins, it tries to load pygmy.fth from the directory
that pygmykernel.py is in. Failing that, it tries to load pygmy.fth from the current
directory.

After loading pygmy.fth, it attempts to load any additional Forth �les passed to it
on the command line. For example,

$ pygmykernel.py stars.fth

The above would load pygmy.fth and then load stars.fth.
After loading the source �les, it runs the interactive loop (the REPL) known in Forth

as QUIT. The word QUIT is de�ned in pygmy.fth but you could rede�ne it either by
editing pygmy.fth directly (not recommended) or by de�ning it again in a �le that is
loaded later. Later de�nitions replace earlier de�nitions.

By rede�ning QUIT, you can run an application (in which case, depending upon your
code, perhaps no interactive prompt will appear).

14

Turnkey Applications

See the previous section about the kernel and how to run Pygmy Forth. Since you can load
additional �les just by placing them on the command line, you can load your application
(let’s call it myapp.fth) wherein you have rede�ned QUIT to run your application
instead of running a REPL.

$ pygmy myapp.fth

or you can create a shell script named myapp or myapp.sh (or, on Windows, perhaps
an equivalent batch �le) that looks something like this:

#!/bin/sh
/usr/bin/python3 \

/usr/local/bin/pygmykernel.py myapp.fth

The backslash at the end of the second line indicates the command is continued on the
third line. You would ordinarily write lines two and three on a single line (without the
backslash).

Of course, you will need to make the shell script executable, e.g.,

$ chmod +x myapp

If you are running something other than Linux/Unix (or even if you aren’t), you might
Google for “how to make a turnkey Python app for Windows”. One thing that turned up
that looks interesting is http://www.pyinstaller.org/index.html.

Hiding/Protecting/Encrypting Your Source Code

Let’s not do that.

15

Numeric Bases

By default, input and output are in decimal but hexadecimal is also recognized.
Traditionally, Forth allowed nearly any arbitrary base, at least up to base 36 (10 digits

plus 26 letters of the alphabet).
In microprocessor work, binary, octal, decimal, and hexadecimal might all be useful at

times, but for PC/desktop applications, I think decimal and hexadecimal are all that will be
needed.

An initial dollar sign indicates a hexadecimal number on input. To display a number in
hexadecimal, print it with the word .H.

$45 EMIT --> E
65 .H --> 41

16

Numbers

Pygmy Forth accepts integers and �oats and characters as numbers, e.g.,

13 . --> 13
13.75 . --> 13.75
’E . --> 69
’E EMIT --> E

17

Strings and Characters

" Hello" . --> Hello
" Hello" EMIT --> H
" Hello" COUNT TYPE --> Hello
." Hello" --> Hello

Unlike traditional Forths, in Pygmy Forth, a character is just a string with a length of one.
Consider the Forth BL. It is de�ned like this:

CODE BL dpush(’ ’) END-CODE

It returns a string containing a space rather than the ASCII code for a space. However, ’A,
etc., put a number on the stack (the ASCII code for the character), so there may be some
inconsistency here.

18

Text Files versus Block Files

There are more or less three types of �les for Forth source code:

• classic block �les

• pseudo block �les

• text �les

I can see Pygmy Forth supporting all three types, but to begin with, it supports loading
just from pseudo block �les and from text �les.

Pygmy for DOS has a simple, pleasant, block editor. I used it happily for years.
However, these days, most of my life is spent in Emacs. Anything other than Emacs is

fairly painful to me. I’m sure others feel the same about Vi or their favorite text editor.
Some people like to keep Forth source code in plain text �les and others like to keep it

in blocks.
The new Pygmy Forth lets you use either or both, except, the block �les supported at

this time are really pseudo block �les.

Text Files

The new Pygmy Forth can load directly from text �les like this:

" mysource.fth" LOAD

Note that the �le doesn’t need to be opened or closed explicitly.

Pseudo Block Files

Pygmy Forth can also load from pseudo block �les like this

" myapp.blk" OPEN
1 LOAD
13 LOAD
" anotherapp.blk" OPEN
300 LOAD

19

Pygmy Forth User Manual 20

A pseudo block �le needs to be opened before accessing it. It does not need to be closed
explicitly. It remains open until another pseudo block �le is opened (or until the program
exits).

Pseudo block �les are really plain text �les with a special comment line that marks the
beginning of each block.

This lets you edit text �les as if they were block �les, but with no requirements on the
size of the blocks. They are “logical” blocks rather than physical 1024-byte blocks.

A special comment is used to indicate the start of a block. Here is an example:

(block 7)

The comment must start at the left margin with an opening parenthesis followed by one
or more spaces, followed by either the word “block” or the word “shadow”, followed by
one or more spaces and then the block number. Eventually, the comment line must end
with a closing parenthesis.

Here are some examples:

(block 3 miscellaneous)
(block 7)
(shadow 7)
(block 375 some description)

Shadow blocks, used for documentation, are optional and are ignored by LOAD.

Pygmy-mode and Emacs

Since a pseudo block �le is a plain text �le, you can use any text editor you wish. However,
an editor with outlining capabilities comes in handy so you can see all the block comment
lines with the contents hidden, or display just one block at a time and page down and page
up to move from block to block.

Pygmy Forth comes with an Emacs mode (pygmy-mode) to help edit pseudo block
�les.

I �rst tried something like this with Riscy Pygness (for ARM chips) (forthblocks.el),
but I wasn’t completely happy with that �rst attempt.

I tried again for Pygmy Forth. I am much happier with pygmy-mode: (see the included
�le pygmy-mode.el).

The mode also has a command to renumber blocks which goes through the text �le and
renumbers all the blocks consecutively. Other keystrokes collapse or expand the blocks (to
and from outline mode) or move to the next or previous block or shadow block.

Because the �le is a text �le, and the block boundaries are marked by special comment
lines, each block can be as short or long as you like.

The word LOAD distinguishes between block �les and text �les by whether you give it
a number or a �le name:

1492 LOAD

loads block number 1492 (assuming the �le had already been opened)

Pygmy Forth User Manual 21

" utilities.fth" LOAD

loads the text �le named utilities.fth from the current directory

" /home/frank/app1/utilities.fth" LOAD

loads a text �le from an absolute path

Pseudo block �les need to be opened before accessing them. At most a single pseudo block
�le can be active at any one time. So, the 1492 example above should really be

" columbus-navigation-aids.scr" OPEN
1492 LOAD

To use pygmy-mode, just copy pygmy-mode.el to somewhere in your Emacs load
path, or, as shown below, give the full path to pygmy-mode.el, which assumes you
put the �le into your home directory.

Then add this to your .emacs �le

(autoload
’pygmy-mode
"~/pygmy-mode.el"

"Major mode to edit Forth pseudo block files." t)

(add-to-list
’auto-mode-alist
’("\\.scr\\’" . pygmy-mode))

(add-to-list
’auto-mode-alist
’("\\.blk\\’" . pygmy-mode))

(Warning, you should be able to copy and paste the above to your .emacs �le from the
HTML version of this manual. However, you if you copy and paste from the PDF version
of this manual, the single and double quotation marks must be edited to change them from
curly quotes to straight quotes.)

Theadd-to-list forms associate the �le extensions.scr and.blkwith pygmy-
mode so that it will be started automatically when you open a �le with one of those
extensions. Edit the add-to-list forms to use suit your �le naming conventions.
(Currently, I use .fth to indicate a text �le and .blk and .scr to indicate pseudo block
�les.)

To see the documentation for pygmy-mode, open a �le in pygmy-mode then press
C-h m. This runs the Emacs describe-mode command.

Pygmy-mode recognizes the special block marker comment lines and treats them
as headings. See the pygmy-mode documentation mentioned above or see the �le
stars.scr for examples.

Pygmy Forth User Manual 22

The keystrokes C-c C-n and C-c C-p move to the next or previous block. S-TAB
cycles through the three visibility settings. C-v and M-v (and PgDn and PgUp) move to
the next or previous block and also “narrow” the bu�er to show just the single block. To
“unnarrow” the bu�er, press S-TAB.

Stacks

Because words, both CODE and high-level, are compiled down to Python procedures, there
is not much need for the return stack except for its use as a “third hand” and for nested
LOADs. PUSH and POP move an item to and from the return stack. R@ copies the top
return stack item to the data stack. PUSHing and POPing addresses to a�ect �ow control
will not work.

Furthermore, stack items, unlike with previous Forths, no longer have a “width” and
are not necessarily numbers. For example, a stack item could be a string itself rather than
the address of a string. In practice, though, this makes little di�erence. COUNT, TYPE, etc.,
still work.

" This is a string" COUNT TYPE

23

Loops

As with my previous Forths, FOR . . . NEXT is the main looping mechanism.

: DOSOMETHING (-) 10 FOR SOMETHING NEXT ;
DOSOMETHING

The above will do SOMETHING 10 times. The index counts down, so

: CD (-) 3 FOR I . NEXT ;
CD

would print

2 1 0

Other looping commands are BEGIN . . . UNTIL, BEGIN . . . AGAIN, and BEGIN . . .
WHILE . . . REPEAT.

24

Files

In addition to Python (version 3 or later), two �les are required to run Pygmy Forth.

pygmykernel.py
This de�nes enough of the Forth mechanism so it can load the rest of the system
from pygmy.fth.

pygmy.fth
This is loaded by pygmykernel.py to �esh out the Forth system.

The shell script pygmy.sh is also provided as an example of a shorter way to start Pygmy
Forth. It may need to be edited to adjust it to your system. On a Microsoft Windows system,
you could write a similar batch �le.

25

CODE words

The Pygmy Forth kernel (pygmykernel.py) is written in Python. This has the advan-
tage of running anywhere that Python can run, which is everywhere (at least Linux, Unix,
other Unix-like systems, Microsoft Windows, Apple Mac OS—if you get Pygmy running
on something else, including tablets and phones, I’d love to hear about it).

The Forth primitives (CODE words), instead of being written in assembly language,
are written in Python. In e�ect, Python is the assembly language for Pygmy Forth.

Some utility Python functions (de�ned in pygmykernel.py) are useful for access-
ing the stacks and printing a list:

dpush()
pushes its arguments to the data stack

dpop()
pops one or more items o� the data stack

tos()
returns the top item on the data stack

rpush()
pushes its arguments to the return stack

rpop()
pops one or more items o� the return stack

dotList()
prints a list (used by .S, .RS, and WORDS)

Here is an example of a CODE word (from pygmy.fth):

CODE PUSH rpush(dpop()) END-CODE

Note, there must be at least two spaces (or a line feed followed by a space) between the
name (PUSH) and the start of the Python code. Otherwise, you will get the error:

The body of code word XXXX must be indented

The above code for PUSH pops an item from the data stack and pushes that item to the
return stack.

Everything between the new word’s name and END-CODE is written in Python.
The above de�nition can be written on a single line, but more complicated de�nitions

may need to be written on multiple lines like this:

26

Pygmy Forth User Manual 27

CODE PUSH
rpush(dpop())

END-CODE

or

CODE EMIT
x = dpop()
if isinstance (x, str):

print(x[:1], end=’’)
else:

print(chr(x), end=’’)
END-CODE

Note that Python indentation rules must be observed.
If the Python code consists of multiple expressions (not statements), they can be written

on a single line if separated by semicolons, like this:

CODE +
a,b = dpop(2); dpush(a+b)

END-CODE

or

CODE + a,b = dpop(2); dpush(a+b) END-CODE

Unlike traditional Forth, you cannot use Forth-style comments between CODE and END-
CODE. Forth-style comments may be placed outside, though, like this:

(a b - a+b)
CODE + a,b = dpop(2); dpush(a+b) END-CODE

or, with proper indentation, Python comments may be used, like this:

CODE +
(a b - a+b)
a,b = dpop(2); dpush(a+b)

END-CODE

If the Python code consists of multiple statements (rather than expressions), then multiple
lines must be used, like this:

CODE IF
global _tab
assemble ("if dpop():")
_tab += 1

END-CODE

Pygmy Forth User Manual 28

Note that Python procedures de�ned as CODE words are not allowed to have parameters
and, if they return values, those values are ignored. Instead, they must take their arguments
from the data stack and return any values by placing them on the data stack. The functions
dpush(), dpop(), tos(), etc., help with that.

a = dpop()

otherwise, dpop(n) (with n > 1) removes n items from the data stack and returns a tuple. If
the data stack consists of (4, 5, 6, 7, 8) (8 is on top), then the top 3 items can be popped o�
and assigned to three Python variables with

a,b,c = dpop(3)

which sets a to 6, b to 7, c to 8, and leaves the data stack as (4, 5) with 5 on top.
The following would push 3 items to the data stack, leaving 9 on top.

dpush (7, 8, 9)

The functions rpop() and rpush() work the same way except on the return stack.

High-level Forth words

These are colon de�nitions and VARIABLEs.
Here are some examples:

: 0= (n - f) 0 = ;

: STAR (-) ’* EMIT ;

: STARS (n -) FOR STAR NEXT ;

VARIABLE F1
F1 @ . --> 0
13 F1 !
F1 @ . --> 13
" hello" F1 !
F1 @ . --> hello
F1 @ COUNT TYPE --> hello

To de�ne a constant, use a colon de�nition, e.g.,

: X 35 ;
: Y 72 ;

29

Compiling

Each Forth word is compiled as a Python procedure.
As always, a Forth word name may contain any non-white-space character.
When possible, the Forth word name is used as the Python procedure name. For

example, the Forth word QUIT becomes the Python procedure QUIT.
However, when the Forth word is not a valid Python procedure name, the name is

adjusted. For example, the Forth word + becomes the Python procedure Plus and the
Forth word ; becomes the Python procedure Semi.

The Forth dictionary maps the Forth word name to the name of the Python procedure.
(You do not need to keep track of the Python procedure names.)

Forth Word Name Limitations

One caution: it is possible to step on a Python function. Generally, you are safe if you use
upper case for the Forth word names. That is, OPEN would not step on the Python open
function.

To help avoid such problems, a warning is displayed whenever a Python name is
rede�ned.

30

True and False Values

Traditionally in Forth, false is represented by the integer zero and true is represented by
any other integer. This is still true in Pygmy Forth but with an extension. The Python
values True and False are also recognized by Pygmy Forth. (The Forth words TRUE
or FALSE put the Python values True or False on the stack.)

So, we can de�ne 0= like this

(n - f)
CODE 0=

dpush (dpop() == 0)
END-CODE

rather than

(n - f)
CODE 0=

if dpop() == 0:
dpush (1)

else:
dpush (0)

END-CODE

In practice, we de�ne = as a CODE word then de�ne 0= as a high-level word, like this:

(a b - f)
CODE =

a = dpop()
b = dpop()
dpush(a == b)

END-CODE
: 0= (n - f) 0 = ;

or

(a b - f)
CODE =

a,b = dpop(2)
dpush(a == b)

END-CODE
: 0= (n - f) 0 = ;

31

Pygmy Forth User Manual 32

The Forth data stack can hold more than just integers. It can also hold True, False,
strings, and �oats.

Forth IF, UNTIL, and WHILE recognize 0, False, and the empty string as false,
and anything else as true.

VARIABLEs

A Forth variable is de�ned by the word VARIABLE, like this

VARIABLE STATUS

When the variable, e.g., STATUS, is executed, it puts its name (as a string) on the stack.
The words @ and ! use this string to access the variable in the variables dictionary. Since
we are not concerned the width of a stack item, there is no need for C@, C!, etc.

I’m not sure you would need to do it, but here is an example of how you could access
the value of a variable within a CODE word:

VARIABLE STAT#
CODE CHECK-STATUS

if variables[’STAT#’]:
print ("Uh-oh, we’ve got trouble")

else
print ("Fortunately, status is OK")

END-CODE

Unlike with traditional Forths, a Pygmy Forth variable does not have a �xed size and does
not represent a memory address.

33

Constants

Constants are de�ned as colon de�nitions, e.g.,

: WIDTH 30 ;

Alternatively, constants could be de�ned as CODE de�nitions like the following, but there
is no reason not to use the simpler colon de�nition.

: CODE WIDTH dpush(30) END-CODE

Unlike traditional Forths, there is no need to de�ne small integers as constants. The only
reason to de�ne a constant is for naming clarity.

34

Glossary

In Pygmy Forth, WORDS will display the words in whichever vocabulary is current. COM-
PILER switches to the COMPILER vocabulary. FORTH switches back to the FORTH
vocabulary.

The following sections list the words in the two vocabularies, along with their stack
e�ects.

The FORTH words have a single stack e�ect.
The COMPILER words have two stack e�ects:
The �rst is the stack e�ect at compile time and the second is the stack e�ect at run

time.
For example, consider the word ". It marks the beginning of a string. It is de�ned both

in FORTH and in COMPILER.
The version in FORTH collects the string up to the ending quotation mark and pushes

the string to the data stack, so its stack e�ect is (- s).
The version in COMPILER collects the string up to the ending quotation mark and lays

down some code, so its stack e�ect at compile time is (-). At run-time, the laid-down code
pushes the string to the data stack, so its stack e�ect at run-time is (- s).

In the stack e�ect comments,

• f stands for �ag (something treated as a true or false value)

• n, n1, n2, etc., stand for numbers

• s stands for a string

• # stands for a count or length

• x, a, b, etc., stand for anything, or something appropriate for the context

• n|s stands for either a number or a string

• c|s stands for either a character code or a string

The hyphen separates the stack picture when the word begins to execute from the stack
picture after the word �nishes executing.

To see the de�nitions, look in the �les pygmykernel.py and pygmy.fth.

35

FORTH vocabulary

! (value v -) “store” the value into the variable v

" (- s) put a string on the stack, e.g., " This is a string"

((-) ignore the input stream up through the closing parenthesis, i.e., start a
comment

* (a b - a*b)

+ (a b - a+b)

- (a b - a-b)

. (x -) print and remove top of stack

." (-) print the string, e.g., ." Hello"

.H (n -) print n in hexadecimal

.RS
(-) display the return stack

.S (-) display the data stack

/ (a b - a/b) divide a by b

0= (n - f) f is True if n is zero, else False

1+ (n - n+1) increment n by 1

2DROP
(a b -)

2DUP
(a b - a b a b)

; (-) marks the end of a colon de�nition

< (n1 n2 - f) f is True if n1 is less than n2, else False

<= (n1 n2 - f) f is True if n1 is less than or equal to n2, else False

= (a b - f) f is True if a equals b, else False

36

Pygmy Forth User Manual 37

> (n1 n2 - f) f is True if n1 is greater than n2, else False

? (v -) fetch and print the value of variable v

@ (v - value) “fetch” the value of the variable v

ABORT
(s -) print the string and return to the interactive QUIT loop

AND
(f f - f) f is True if both inputs are true, else False

BL (- blank) put a space on the stack

BLOCK
(n - s) put the contents of pseudo block n on the stack as a string

BYE
(-) exit Pygmy Forth

CODE
(-) de�ne a primitive in Python up to the END-CODE marker

COMPILER
(-) change context to COMPILER vocabulary

COUNT
(s - s #) put the length of the string on the stack

CR (-) print a carriage return

DROP
(x -)

DUP
(a - a a)

EMIT
(c|s -) print a character

END-CODE
(-) marks the end of a CODE de�nition

FALSE
(- False) push the Python False to the stack

Pygmy Forth User Manual 38

FORTH
(-) change context to FORTH vocabulary

LOAD
(n|s -) load the block or �le

NOT
(f - f) f is True if input is false and vice versa

OPEN
(s -) open a pseudo block �le named s

OR (f f - f) f is True if either input is true, else False

OVER
(a b - a b a)

POP
(- x) move top of return stack to data stack

PUSH
(x -) move top of data stack to return stack

QUIT
(-) the main interactive loop (REPL)

R@ (- x) copy top of return stack to data stack

SWAP
(a b - b a)

THRU
(first last -) load a range of pseudo blocks

TRUE
(- True) push the Python True to the stack

TYPE
(s # -) print the �rst # characters of the string

VARIABLE
(-) de�ne a variable, taking the name from the input stream, e.g., VARIABLE
STATUS

WORD
(s1 - s2) collect input up to s1 and put it on the stack as s2

WORDS
(-) display words of the current vocabulary

XOR
(f f -) f is True if exactly one input is true, else False

: (-) start a high-level Forth de�nition

COMPILER vocabulary

" (-) (- s) compile a string that will be pushed to stack at run-time

((-) (-) ignore the input string up through the next closing parenthesis, i.e., a
comment

." (-) (-) compile a string that will be printed at run-time

;; (-) (-) exit the Forth word at run-time, synonym for EXIT

AGAIN
(-) (-) end a BEGIN . . . AGAIN structure

BEGIN
(-) (-) begin a BEGIN . . . UNTIL or BEGIN . . . AGAIN structure

ELSE
(-) (-) begin the false part of an IF . . . ELSE . . . THEN structure

EXIT
(-) (-) exit the Forth word at run-time

FOR
(-) (n -) begin a FOR . . . NEXT structure

I (-) (- n) at run-time, push the loop index to the data stack

IF (-) (f -) begin an IF . . . THEN or IF . . . ELSE . . . THEN structure

NEXT
(-) (-) end a FOR . . . NEXT structure

REPEAT
(-) (-) end a BEGIN . . . WHILE . . . REPEAT structure

THEN
(-) (-) end the IF . . . THEN or IF . . . ELSE . . . THEN structure

UNTIL
(-) (f -) end a BEGIN . . . UNTIL structure

WHILE
(-) (f -) begin the conditional part of a BEGIN . . . WHILE . . . REPEAT
structure

39

Afterword

My mind is not yet settled on whether the current implementation is the best approach, or
even how useful it might be. Certainly, it has some quirks and lacks some features. Also,
it has not been tested very thoroughly yet. I need to get some experience with it, and,
hopefully, some feedback from you about your experiences with it.

I hope to put together a mailing list of Pygmy correspondents, etc., so I can mail
out the occasional notice. If you would like to be on the list, just drop me a note at
frank@pygmy.utoh.org.

– Frank
http://pygmy.utoh.org
frank@pygmy.utoh.org

40

	Introduction
	Quick Start
	Running Pygmy Forth
	Implementation Language
	Vocabularies
	Multitasking
	I/O Redirection
	Definitions
	Recursion
	Kernel
	Turnkey Applications
	Numeric Bases
	Numbers
	Strings and Characters
	Text Files versus Block Files
	Stacks
	Loops
	Files
	CODE words
	High-level Forth words
	Compiling
	True and False Values
	VARIABLEs
	Constants
	Glossary
	FORTH vocabulary
	COMPILER vocabulary

	Afterword

